High-fidelity entangling gate for double-quantum-dot spin qubits
نویسندگان
چکیده
منابع مشابه
High-fidelity gates in quantum dot spin qubits.
Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semicon...
متن کاملHigh-fidelity initialization of long-lived quantum dot hole spin qubits by reduced fine-structure splitting
متن کامل
Weak measurement of quantum dot spin qubits
The theory of weak quantum measurements is developed for quantum dot spin qubits. Building on recent experiments, we propose a control cycle to prepare, manipulate, weakly measure, and perform quantum state tomography. This is accomplished using a combination of the physics of electron spin resonance, spin blockade, and Coulomb blockade, resulting in a charge transport process. We investigate t...
متن کاملHigh-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses
We show that the use of shaped pulses improves the fidelity of a Rydberg-blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical derivative removal by adiabatic gate (DRAG) pulses that reduce excitation of primary leakage states and an analytical method of finding the optimal Rydberg bloc...
متن کاملSix-electron semiconductor double quantum dot qubits
We consider a double quantum dot (DQD) qubit which contains six electrons instead of the usual one or two. In this spin qubit, quantum information is encoded in a low-lying singlet-triplet space much as in the case of a two-electron DQD qubit. We find that initialization, manipulation, and readout can be performed similarly to the two-electron case, and that energy gaps remain large enough that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: npj Quantum Information
سال: 2017
ISSN: 2056-6387
DOI: 10.1038/s41534-016-0003-1